
SUMMARY

Palatogenesis is a complex developmental
process that requires two main events: elevation
and then fusion of the palatal shelves. There
remains controversy concerning the mecha-
nism(s) responsible for palatal shelf elevation, it
being proposed that an intrinsic shelf elevation
force might be produced either by the genera-
tion of a turgor pressure following hydration of
the extracellular matrix via its glycoconjugate
molecules or by proliferation, migration and/or
contraction of the palatal shelf mesenchymal
cells. Recent evidence indicates that the shelf
elevation force is related to the presence of
hyaluronan in the extracellular matrix, to an as
yet unknown molecule that is packaged in the
mesenchymal cells’ Golgi complex, and to CD44
receptor functioning. For fusion of the palatal
shelves to occur, the breakdown of the midline
epithelial seam relates to apoptosis and rediffer-
entiation of the epithelial cells and this appears
to be signalled by the synthesis of type IX colla-
gen just prior to the breakdown of the basement
membrane around the midline epithelial seam.
The events associated with palatogenesis are
controlled by the palatal shelf mesenchyme,
under the influence of a variety of homeobox
genes and transcription factors and and of sev-
eral growth factors (particularly TGF-βs).
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INTRODUCTION

Palatogenesis is a complex event and is often
disturbed to produce the congenital defect

known as cleft palate. Consequently, the events
and mechanisms responsible for the develop-
ment of the palate have been much studied,
although some controversy remains.

The definitive palate (or secondary palate)
develops in the human fetus between the sixth
and eighth week of intra-uterine life (e.g. Fergu-
son, 1978a; Johnston and Sulik, 1990; Sadler,
2000; Berkovitz et al., 2002). By the sixth week
of development (Fig. 1), the primitive nasal cav-
ities are separated by a primary nasal septum
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Figure 1. Diagram showing the state of development of the palate
by the sixth week of intra-uterine life. A = primitive nasal
cavities; B = primary nasal septum; C = primary palate.
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and are partitioned from the primitive oral cavi-
ty by a primary palate. Both the primary nasal
septum and primary palate are derived from the
frontonasal process of the developing face. The

stomodeal chamber is divided at this stage into
the small primitive oral cavity beneath the pri-
mary palate, and the relatively large oronasal
cavity behind the primary palate. As shown in
Figure 2, during the sixth week of development,
two palatal shelves develop laterally behind the
primary palate from the maxillary facial process-
es. A secondary nasal septum grows down from
the roof of the stomodeum behind the primary
nasal septum, thus dividing the nasal part of the
oronasal cavity into two.

Figure 3 shows the developing head during
the seventh week of development. At this stage,
the oral part of the oronasal cavity becomes
completely filled by the developing tongue.
Growth of the palatal shelves continues such
that they come to lie vertically. Two peaks of
DNA synthesis occur as the palatal shelves are
formed: during initial shelf outgrowth and during
vertical shelf elongation (Burdett et al., 1988).
The reason for mammalian shelves forming with
a vertical orientation is unknown. It has been
suggested that the potential space in the
oronasal cavity is insufficient because of the evo-
lution of a large tongue in mammals (Hayward
and Avery, 1957). However, Young et al. (1990)
have shown that there is no spatio-temporal rela-
tionship between the development of the tongue
and the palatal shelves.

During the eighth week of development (Fig.
4), the stomodeum enlarges, the tongue ‘drops’
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Figure 2. Diagram showing the development of the palate during
the sixth week of intra-uterine life. A = lateral palatal
shelves; B = primary palate; C = secondary nasal septum.

Figure 3. Coronal section through the developing head during the seventh week of development showing the palatal shelves (A). B = devel-
oping tongue. (Masson’s trichrome). x 55.
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and the vertically-inclined palatal shelves become
horizontal. It has been suggested that the descent
of the tongue is related to mandibular growth
and/or a change in the shape of the tongue (e.g.
Humphrey, 1971; Diewert, 1974). On becoming
horizontal, the palatal shelves contact each other
(and the secondary nasal septum) in the midline
to form the definitive or secondary palate. The
shelves contact the primary palate anteriorly so
that the oronasal cavity becomes subdivided into
its constituent oral and nasal cavities. Figure 5
shows a coronal section through the developing
oronasal regions following contact of the palatal
shelves and secondary nasal septum. After con-
tact, the medial edge epithelia of the two shelves
fuse to form a “midline epithelial seam” (MES).
Subsequently, this degenerates so that mes-
enchymal continuity is established across the
now intact, and horizontal, secondary palate.
Fusion of the palatal processes is complete by the
twelfth week of development. Behind the sec-
ondary nasal septum, the palatal shelves fuse to
form the soft palate and uvula.

Concerning the origin of the mesenchyme
within the fetal processes contributing to the
development of the palate, all of the skeletal and
connective tissues that form the face are derived
from neural crest (NC) cells that originate along
the dorsal margins of the midbrain and rostral
hindbrain (Noden, 1978; Couly et al., 1992; Könt-
ges and Lumsden, 1996; Le Douarin and Kalcheim,

1999). Indeed, Been and Song (1978) have shown
that localized destruction of midbrain NC inter-
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Figure 5. Coronal section through developing oronasal regions following contact of the palatal shelves (A) and secondary nasal septum (B);
C = midline epithelial seam; D = developing bone of maxilla. (Masson’s trichrome). x 55.
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Figure 4. Diagram showing the state of development of the palate
during the eighth week of intra-uterine life. A = palatal
shelves; B = primary palate.



feres with palatal closure. In mammalian fetuses,
cranial NC cells do not always migrate before the
neural tube closes (e.g. Tan and Morriss-Kay,
1986). Furthermore, recent work suggests that
craniofacial development does not depend on NC
pre-programming but is controlled by a complex
combination of cell and tissue interactions involv-
ing NC plasticity (Trainor and Krumlauf, 2001).
Evidence is also available that suggests that NC
cells can be reprogrammed and that their fate and
identity depends upon the cellular signals they
receive as they migrate to their target tissues (e.g.
Schilling et al., 2001). This seems to occur as a
result of alteration in Hox gene identity. However,
there is some work indicating that NC cells have
some identity at their place of origin near the neur-
al tube; although elaboration of their development
is reached via integration and interaction with sig-
nals from surrounding tissue environments
through which they migrate (Grammatopoulos et
al., 2000; Pasqualetti et al., 2000).

Recent research on palatogenesis has concen-
trated on two main events: palatal shelf elevation
and the initial stage of fusion of the shelves. 

PALATAL SHELF ELEVATION

Several mechanisms have been proposed to
account for the rapid movement (Ferguson, 1978;
Brinkley, 1980) of the palatal shelves from the ver-
tical to the horizontal position and the source of
the force(s) responsible for palatal shelf reorienta-
tion/elevation is a matter of controversy. Two cat-
egories of explanations have been provided: either
the forces are extrinsic to the shelves or they are
generated intrinsically by the shelf mesenchyme.

Those extrinsic forces that have been proposed
often relate to movement of the tongue. For
example, there have been hypotheses that include
downward movement of the tongue due to a
mandibular growth spurt clearing a path for
palatal shelf elevation (e.g. Asling et al., 1960;
Diewert, 1974), a downward displacement of the
tongue by the nasal septum again clearing a path
for shelf elevation (e.g. Zeiler et al., 1964), and a
lowering of the tongue due to a fetal mouth open-
ing reflex (e.g. Humphrey, 1969, 1971). It has also
been suggested that the tongue physically pushes
the palatal shelves upwards (e.g. Walker, 1971).
However, it is now generally thought that the
palatal shelf elevation force is not extrinsic in ori-
gin. Ferguson (1978a) reviewed the literature relat-
ing to extrinsic forces and concluded that the
chronology of events extrinsically did not neces-
sarily synchronise with shelf elevation. Further-
more, following tongue excision during palatoge-
nesis, no spatio-temporal relationship exists and
aglossia and microglossia in humans does not pre-
vent palatal closure (Young et al., 1990). In addi-
tion, palatal shelves are seen to elevate in organ
culture in the absence of a tongue or a lower jaw.

It has been proposed that the intrinsic shelf
elevation force might develop as a result of
hydration of extracellular matrix (ECM) compo-
nents (principally hyaluronan) in the shelf mes-
enchyme (e.g. Larsson et al., 1959; Pratt et al.,
1973; Ferguson, 1978a; Brinkley and Morris-
Wiman, 1984, 1987; Singh et al., 1994, 1997), or
as a result of mesenchymal cell activity (e.g.
Shah, 1979, 1980; Innes, 1978; Wee et al., 1979;
Zimmerman, 1979; Babiarz et al., 1979; Luke,
1984; Bulliet and Zimmerman, 1985; Brinkley and
Bookstein, 1986; Shah et al., 1989). Of course, the
intrinsic shelf elevating force might be multifac-
torial, although there is as yet no experimental
evidence to support what otherwise might be
considered a “commonsense” view.

Much recent work has focussed on the
changes occurring in the ECM of the palatal
shelf’s mesenchyme during shelf elevation. The
changing amounts of glycosaminoglycans (GAG)
during development of the anterior (presumptive
hard) and posterior (presumptive soft) palates
have been reported by Singh et al. (1994) and
are illustrated in Fig. 6. The findings show that
the most significant changes occur after eleva-
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Figure 6. Graphs illustrating the changing amounts of glycosamino-
glycans (GAG) during development of the anterior (pre-
sumptive hard) and posterior (presumptive soft) palates.
Stage A – prior to shelf elevation; Stage B – after shelf ele-
vation; Stage C – during shelf fusion and early histogene-
sis; Stage D – a stage of marked histogenesis after fusion.
Courtesy of Dr G.D. Singh and B.J. Moxham and the edi-
tor of Archives of Oral Biology.



tion and that, during the time of elevation, there
are no differences between the anterior and pos-
terior regions of the shelves even though, in the
species studied here (the rat), the posterior
region of the shelf does not elevate but grows
initially with a horizontal disposition (Coleman,
1965; Cleaton-Jones, 1976a; Singh et al., 1994).
Singh et al. (1997) have also reported that, when
palatal clefts are induced in the rat by 5-fluoro-
2-deoxyuridine (FUDR), GAG biosynthesis is
suppressed.

Three types of GAG are found in the devel-
oping palatal shelves in vivo (Singh et al., 1994,
1997): hyaluronan, heparan sulphate and chon-
droitin-4-sulphate (Fig. 7). If palatal shelves are
cultured in vitro, dermatan sulphate is also pre-
sent (e.g. Burkitt, 1990), highlighting the prob-
lem of extrapolating from the findings of tissue
culture to the in vivo situation. Furthermore,
there may be species differences since, using
early histochemical techniques, it has been
claimed that chondroitin-6-sulphate may be pre-
sent in mouse palatal shelves (Larsson, 1962).

Much attention has been paid to the role of
hyaluronan in shelf elevation. It has been pro-
posed that hyaluronan is a GAG involved in

shelf elevation because it is highly electrostati-
cally charged, it displays non-ideal osmolarity,
and its open coil molecule is capable of binding
up to 10 times its own weight in water (e.g. Pratt
et al., 1973; Brinkley and Morris-Wiman, 1987).
This view has the support of the work of Fore-
man et al. (1991), where an increase in water
content of the palatal shelves was observed up
until shelf fusion.

Figure 8 shows a section through a vertical
(pre-elevation) palatal shelf stained using the
hyaluronectin/anti-hyaluronectin technique
(Girard et al., 1986) and shows intense staining
for hyaluronan within the palatal shelf mes-
enchyme. Singh et al. (1994) have investigated
the changing concentrations of hyaluronan with-
in the anterior and posterior regions of palatal
shelves (Fig. 9). Statistically, there is significantly
more hyaluronan in the shelves immediately
before elevation than immediately after eleva-
tion. However, the data do not agree with some
reports that there is less hyaluronan posteriorly
than anteriorly (Knudsen et al., 1985), the pat-
tern of change in hyaluronan again being similar
both anteriorly and posteriorly even though the
posterior region does not undergo elevation to
reach the horizontal (Coleman, 1965; Cleaton-
Jones, 1976a; Singh et al., 1994).

Singh et al. (1994) also reported that,
although heparan sulphate and chondroitin-4-
sulphate are present within the palatal shelves
throughout palatogenesis, these GAGs do not
show detectable changes at the time of palatal
shelf elevation.
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Figure 7. Densiometric scan of electrophoretograms showing the
GAGs within the palatal shelves. HA – hyaluronan; HS –
heparan sulphate and C4S – chondroitin 4-sulphate.
Courtesy of Dr G.D. Singh and B.J. Moxham and the edi-
tor of Archives of Oral Biology.

Figure 8. Section through a vertical (pre-elevation) palatal shelf (A)
stained using the hyaluronectin/anti-hyaluronectin tech-
nique to demonstrate the presence of hyaluronan. x 40.
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That FUDR is associated with the production
of cleft palates (e.g. Singh et al., 1997) has also
been implicated in supporting the notion that
hyaluronan is important in palatogenesis.
Accordingly, Ferguson (1978b) has reported that
FUDR’s interference in DNA synthesis fits with its
reported effects on glycoconjugate production in
vitro (e.g. Dorfman et al., 1975).

More recent studies (Thomas, 1999; Thomas,
Hall and Moxham, unpublished data) have
revealed the presence during palatogenesis of
enzymes associated with hyaluronan synthesis, of
a cell surface receptor associated with hyaluro-
nan, of the hyaluronan binding ECM components
versican and hyaluronectin, and of hyaluronan
binding sites. Furthermore, using an organ culture
system (Figs. 10-13), agents that alter hyaluronan
content or size, that disrupt GAG substitution on
proteoglycans, or that alter the balance of matrix
molecules secreted via the Golgi complex and
hyaluronan produced at the cell surface all affect
palatogenesis. Figure 10 illustrates the effects of
streptomyces hyaluronidase, an enzyme that
specifically degrades hyaluronan. Streptomyces
hyaluronidase treated shelves produced clefts. In
addition, link protein is absent whilst versican
was evident in the mesenchyme and CD44 in the
ectoderm. The results suggest that palate devel-
opment is disrupted in the absence of hyaluro-
nan. Figure 11 shows the effects of chlorcyclixine,

a substance that enhances degradation of hyaluro-
nan and chondroitin sulphate to lower the mole-
cular weight products, with little effect on their
synthesis and no appreciable effect on DNA syn-
thesis. Chlorcyclixine treated shelves exhibit a
cleft. CD44 and link protein are absent from the
shelves but versican is evident throughout the
mesenchyme. Therefore, the size of the GAG
chain may influence palatogenesis. The effects of
UDP-xylose are illustrated in Fig. 12. UDP-xylose
is a natural inhibitor of UDPGD, the enzyme
responsible for the conversion of UDP-glucose to
UDP-glucuronic acid. UDP-xylose treated shelves
exhibited normal palate development. Link pro-
tein was again absent, but versican and CD44
exhibited the same distribution as seen in control
cultures. Therefore, inhibition of UDPGD has no
effect on palate development (assuming that it
was able to enter the tissue). Figure 13 shows the
effects of Brefeldin A. This inhibits vesicular trans-
port through the Golgi complex. Hyaluronan syn-
thesis is not affected as this GAG undergoes a dif-
ferent synthetic pathway to the other GAGs, being
formed at, or near, the plasma membrane by the
hyaluronan synthase/enzyme complex. Brefeldin
A produced a cleft. While versican was evident
throughout the mesenchyme, link protein and
CD44 were absent. Exposure to BFA at sequential
10h window periods suggests that BFA only caus-
es a cleft in the initial 30h. The results indicates
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Figure 9. Graphs showing the changing concentrations of hyaluronan within the anterior and posterior regions of palatal shelves. A-D stages
of palatogenesis described in Figure 6. Courtesy of Dr G.D. Singh and B.J. Moxham and the editor of Archives of Oral Biology.
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Figure 10. The production of clefts produced during organ culture of rat developing palates following the introduction of streptomyces
hyaluronidase to the culture medium and shown by scanning electronmicroscopy (A) and light microscopy (B). NS = nasal sep-
tum; PS = unfused palatal shelves. Scale bars: 10A = 500 µm; 10B = 400 µm. Courtesy of S.Thomas, R. Hall and B.J. Moxham.
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Figure 11. The production of clefts produced during organ culture of rat developing palates following the introduction of chlorcyclixine to
the culture medium and shown by scanning electronmicroscopy (A) and light microscopy (B). CB = cranial base; PS = unfused
palatal shelves. (11A = x 50; 11B = x 100). Courtesy of S.Thomas, R. Hall and B.J. Moxham.
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Figure 12. Normal palatogenesis during organ culture of rat palates following the introduction of UPD-xylose to the culture medium and
shown by scanning electronmicroscopy (A) and light microscopy (B). P = fused palatal shelves. (12A = x 60; 12B = x 95). Cour-
tesy of S.Thomas, R. Hall and B.J. Moxham.
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Figure 13. The production of clefts produced during organ culture of rat developing palates following the introduction of brefeldin A to the
culture medium and shown by scanning electronmicroscopy (A) and light microscopy (B). CB = cranial base; PS = unfused palatal
shelves. (13A = x 50; 13B = x 100). Courtesy of S.Thomas, R. Hall and B.J. Moxham.
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that a set of macromolecules other than hyaluro-
nan, and synthesised in the Golgi complex, plays
an important role in normal palate development.

Other recent studies at our laboratories at
Cardiff (Hudson and Hall, unpublished data)
have been concerned with the expression of
hyaluronan binding protein splice variants of
CD44, versican and RHAMM and isoforms of
hyaluronan synthases (Has) and hyaluronidases
(Hyal) in the developing rat palate. Expression
of CD44 (the major hyaluronan binding protein)
was found to be both transient and dynamic dur-
ing shelf elevation with differential expression of
CD44 transcripts containing variant exons v1, v2,
v8 and v9. It was also noted that larger tran-
scripts (containing more variant exons) were
present after shelf elevation. It can be argued
that expression of distinct Has and Hyal splice
variants is necessary during palatogenesis in
order for correct tissue formation to occur
because both enzymes produce different sizes of
hyaluronan, thus promoting distinct cellular
responses depending on cell type (Itano et al.,
1999). Small hyaluronan chains can induce gene
expression (McKee et al., 1996), cell signalling
responses and cell differentiation (Termeer et al.,
2000), and cell proliferation and growth (Moha-
patra et al., 1996, Bourguignon et al., 1997),
whereas large hyaluronan chains at high con-
centrations inhibit cell growth and induce cell
adhesion and migration (Noble et al., 1998). Ver-
sican splice variants differ in size and GAG chain
number and are thought to form bridges, help-

ing to stabilize the ECM and create the necessary
turgor pressure to enable shelf elevation.

Other ECM components, including proteogly-
cans, are probably of importance to shelf eleva-
tion. Versican and decorin (but not biglycan)
have been identified at a range of molecular
weights corresponding to various processed
forms. The extent to which aggregation and dis-
aggregation of proteoglycans occurs at different
locations of the palatal shelf and at different
stages of palatogenesis is unknown; although
this could have significant functional implica-
tions associated with shelf elevation. The role of
collagen within the palatal shelves is disputed.
Pratt and King (1972) showed that cleft palates
can result from the administration of lathyrogens
that have specific effects on collagen crosslink
formation. Hassell and Orkin (1976) described
collagen bundles with defined orientation next
to the basement membrane of the palatal shelves
and reported that the rate of collagen synthesis
was greatest just prior to shelf elevation. Indeed,
it has been suggested that these collagen fibres
“direct” the shelf elevation force (e.g. Bulleit and
Zimmerman, 1985) and/or contribute to a critical
volume of the shelves necessary for their re-ori-
entation (Ben-Khaial and Sha, 1994). Immuno-
histochemically, type 1 collagen can easily be
identified (Fig. 14) (Ferguson, 1988). Indeed,
stout bundles of collagen can be seen running
down the centre of the palatal shelf and these
are orientated from the base towards the tip of
the shelf.
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Figure 14. Section of a palatal shelf labelled immunocytochemically with antibodies against type I collagen. A = collagen bundles; B = base
of palatal shelf; C = tip of palatal shelf. x 300. Courtesy of Professor M.W.J. Ferguson.
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The role of the mesenchymal cells within the
palatal shelves has also been controversial.
There is evidence that a critical number of cells
are required for palatal shelf elevation to occur
(e.g. Shah et al., 1989) but there is no reliable
evidence as yet that these cells, by their rapid
division and proliferation or by their migration
or contraction, can generate a palatal shelf ele-
vation force (particularly in view of the rapidity
of shelf elevation). The density of palatal shelf
mesenchymal cells appears to change during
palatogenesis (e.g. Brinkley and Bookstein,
1986). This could be the result of variations in
cell number and/or of cell redistribution. It was
once believed that differential rates of cell
mitoses/proliferation might produce the shelf
elevation force (Luke, 1984; Bulliet and Zim-
mermann, 1985). 3H-thymidine studies have
shown that there are differential rates of mes-
enchymal cell proliferation (e.g. Cleaton-Jones,
1976b). However, the differential rates are prob-
ably related to histogenic changes and do not
necessarily account for the generation of the
shelf elevation force. Brinkley and Bookstein
(1986) showed that shelf re-orientation is
accompanied by changes in mesenchymal cell
density and distribution. They suggested that
high local cell densities were enhanced by cell
division but that decreased cell density (which
cannot be accounted for by an increase in cell
size) was probably related to displacement of
cells by expansion of the ECM. Ferguson
(1978a) also noted the closely packed nature of
mesenchymal cells before elevation and com-
mented upon the greater cell density within the
posterior region of the developing palate (a
region which is the last to fuse).

In addition to mesenchymal cell proliferation,
the production of a shelf elevation force might
also be related to changes, at the critical time, in
cellular morphology (e.g. Brinkley and Book-
stein, 1986) and in particular to changes in the
intracellular microfilamentous and microfibrillar
systems (e.g. Kuhn et al., 1980). Babiarz et al.
(1979) reported that palatal shelf mesenchymal
cells before elevation were elongated and polar-
ized, the cells nearest the basement membrane
being perpendicularly aligned to the membrane.
After shelf elevation, the cells became more
rounded with short cellular projections. Babiarz
et al. (1979) considered that these changes were
indicative of cell contraction and that this could
be the means of generating the shelf elevation
force. Innes (1978) and Shah (1979, 1980)
reported that shelf mesenchymal cells possess
contractile, microfilaments. In addition, contrac-
tile proteins have been isolated from palatal
shelf mesenchymal cells, leading to the claim
that “actin- and myosin-like systems” may be
involved in shelf elevation (Babiarz, Allenspach
and Zimmerman, 1975). Indeed, Babiarz et al.

(1979) reported on the presence of microfila-
ments containing actinomyosin and suggested
that these were associated with cell migration
that could be responsible for shelf elevation.
Wee and Zimmermann (1980) reported that
cytochalasin B inhibits palate shelf elevation by
disrupting actin crosslinking in the cytoskeleton.
However, they also found that curare (a micro-
filament antagonist) enhanced shelf elevation in
vitro, thus providing evidence against the notion
that microfilamentous systems are primarily
responsible for shelf re-orientation. Further-
more, it is not clear whether changes in the
palatal shelf mesenchymal cells are primarily
associated with the re-orientation mechanism or
whether they are the effect of cell displace-
ments/cell activities caused by changes in the
ECM during the period of shelf re-orientation
(e.g. Pratt et al., 1973).

There have been many qualitative electron-
microscopic investigations of the palatal shelf
mesenchymal cells (e.g. De Angelis and Nalban-
dian, 1968; Babiarz et al., 1975; Innes, 1978,
1981, 1985; Ferguson, 1981a). Essentially, these
studies show that the mesenchymal cells appear
to be very active, possessing many mitochon-
dria, abundant cisternae of endoplasmic reticu-
lum, a well-developed Golgi complex, and large
numbers of glycogen particles (organelles appro-
priate for cells actively synthesising and secret-
ing ECM proteins and entirely consistent with the
view that the gradual accumulation of GAG is
correlated with the synthesizing organelles of the
mesenchymal cells). Shah (1979) described ultra-
structural changes occurring during normal
palatogenesis, noting that the cells elongated
after shelf elevation. Lieb and De Paola (1981)
found that the mesenchyme was tightly packed
with polygonal cells possessing centrally placed
ovoid nuclei with prominent nucleoli. They also
reported that there was a large complement of
free ribosomes and polysomes and very little
intercellular space. Recently, it has been report-
ed that filopodia-like structures appear on the
surface of palatal shelf cells at the time of fusion
(Taya et al., 1999). Similar events occur during
development of the intermaxillary segment
when the facial processes fuse (Symons and
Moxham, 2002). Despite these many studies, to
date there have been remarkably few quantita-
tive electronmicroscopic studies. Brinkley and
Bookstein (1986) have undertaken some quanti-
tative studies on the development of the mouse
secondary palate. The purpose of their investi-
gation was to determine differences in cell den-
sity at various stages of palatogenesis in vitro
and consequently, with the exception of the
nuclei, they did not measure the organelles with-
in the mesenchymal cells.

It is obvious that, whether or not the palatal
shelf mesenchymal cells are involved in the
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generation of the shelf elevation force, the cells
have to maintain (and control) events taking
place in the shelf ECM. Indeed, using special
silver staining techniques to highlight nucleolar
organiser regions (NORs), the degree of protein
synthesising activity of the mesenchymal cells
in the palatal shelf at different stages of palato-
genesis has been assessed (Singh and Moxham,
1993) (Fig. 15). The number and configuration
of “grains” within the NORs reflect the overall
degree of protein synthesis by the cells. This
staining procedure confirmed that the rate of
protein synthesis during palatogenesis is high,
is higher before elevation than after elevation,
and is higher still during later stages of histoge-
nesis. These results accord with the changes
occurring in GAG synthesis at various stages of
palatogenesis. The AG-NOR staining technique
further shows that protein synthesis is severely
depressed during cleft formation, but the tech-
nique is unable to demonstrate major differ-
ences between anterior and posterior regions.

Although hyaluronan in the palatal shelves
is most often associated with the development
of a turgor pressure for shelf elevation via
attraction of water molecules, this GAG also
influences cellular activity. For example,
hyaluronan produces large intercellular spaces
during early palatogenesis to prevent cell-cell
and cell-matrix interactions, allowing assembly
of ECM constituents and presentation of growth

factors that in turn influence cell growth and
differentiation by altering the local concentra-
tion of intercellular signals (Toole, 2000). Fol-
lowing shelf elevation, there is a decline in
hyaluronan shelf content (Singh et al., 1994),
probably via CD44 receptor-mediated endocy-
tosis of hyaluronan and hyaluronidases that
produce shorter hyaluronan chains. This
enables the onset of palatal tissue differentia-
tion. Hyaluronan that is taken up into cells can
bind to intracellular hyaluronan binding pro-
teins, including some RHAMM splice variants.
Such binding induces cell signalling pathways
that can, in turn, induce changes in the
cytoskeleton. During differentiation, the inter-
cellular matrix becomes more dense where
hyaluronan is replaced by proteoglycans, but
the remaining hyaluronan binds to such pro-
teoglycans (including hyaluronan binding pro-
teins such as versican, cell surface RHAMM and
CD44) to form a stable ECM.

Finally, although the production of cleft
palates following the administration of FUDR is
thought to be related to interference in ECM gly-
coconjugate production (e.g. Dorfman et al.,
1975; Ferguson, 1978b; Singh et al., 1997), alter-
native explanations are possible in terms of cell
activity within the palatal shelves. Indeed,
Amwayi and Luke (1990) reported that FUDR
produces a decrease in mesenchymal cell prolif-
eration.
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Figure 15. Silver staining of the palatal shelves (A) to assess the degree of activity of the mesenchymal cells. The black silver grains in the mes-
enchymal cell nuclei highlight Nucleolar Organiser Regions (NORs). Silver stain. x 500. Courtesy of Dr. G.D. Singh and B.J. Moxham.
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FUSION OF THE PALATAL SHELVES

Once the palatal shelves have elevated, they
contact each other (initially in the middle third of
the palate; Ferguson 1988) and adhere by means
of an “adhesive” glycoprotein that coats the sur-
face of the medial edge epithelia of the shelves
(Greene and Kochhar, 1974; Pratt and Hassell,
1975; Souchon, 1975; Greene and Pratt, 1977).
Additionally, the epithelial cells develop desmo-
somes (De Angelis and Nalbandian, 1968; Mor-
gan and Pratt, 1977) and consequently an epithe-
lial seam is formed (Morgan and Pratt, 1977;
Ferguson, 1988) (see Fig. 5). The adherence of
the medial edge epithelia is specific as palatal
epithelia will not fuse with epithelia from other
sites (e.g. the tongue) (Ferguson et al., 1984).
This may be related to the fact that the proteins
associated with the formation of desmosomes
(i.e. desmoplakin) appear specifically on the cell
membranes of the medial edge epithelia just
prior to shelf contact (Ferguson, 1988). An intact
basal lamina lies on either side of the epithelial
seam.

The signals that are responsible for the break-
down of the midline epithelial seam (MES) are not
yet fully understood. Nevertheless, the breakdown
of the basal lamina is likely to be a significant
event (e.g. Ferguson, 1988). Figure 16 demon-
strates the fusing palatal shelves immunocyto-
chemically stained with antibodies against type IV
collagen found in basal lamina (Ferguson, 1988;

Fyfe and Ferguson, 1988). At this early stage of
fusion, the basal lamina remains intact. At a later
stage of fusion (Fig. 17), with migration of the
epithelial cells into the mesenchyme, the MES is
disrupted and the migrating cells initially carry
with them fragments of the disrupted basal lami-
na (Fyfe and Ferguson, 1988). Fibrils comprising
tenascin and type III collagen have been shown to
run at right angles to the basal lamina and may
provide guiding pathways for the migrating
epithelial cells (Fyfe and Ferguson, 1988; Fyfe et
al., 1988). Evidence indicates that the events lead-
ing to the breakdown of the MES occur in single
isolated palatal shelves and therefore do not
depend upon shelf contact (Ferguson et al., 1984;
Ferguson, 1988).

Almost as soon as the MES is formed, it thins
to a layer two or three cells thick (Mato et al.,
1966; Ferguson, 1988). This thinning may be the
result of three processes. First, the MES is
thinned by growth of the palate (in terms of
oronasal height) and by epithelial cell migration
from the region of the MES onto the oral and
nasal aspects of the palate (e.g. Fyfe and Fergu-
son, 1988). Second, there is programmed cell
death (apoptosis) in the MES. For example, by
using the TUNEL technique, and by assessing the
presence of macrophages, Martinez-Alvarez et al.
(2000) have shown that MES cells die in the
developing mouse palate at the time of fusion.
Programmed cell death is also suggested by the
finding that DNA synthesis ceases in the medial
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Figure 16. Fusing palatal shelves (A) immunocytochemically labelled with antibodies against type IV collagen found in basal lamina
(arrowed). x 120. Courtesy of Professor M.W.J. Ferguson.
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edge epithelial cells one day prior to shelf con-
tact (Hudson and Shapiro, 1973). Furthermore,
cyclic AMP increases just before shelf fusion (e.g.
Ferguson, 1987) and exogenous cyclic AMP is
associated with precocious cell death in the
medial edge epithelia (Pratt and Martin, 1975). It
has also been shown that epidermal growth fac-
tor (EGF) inhibits medial edge cell death (Has-
sell, 1975; Pratt et al., 1984; Pratt, 1984) and that
this inhibition is blocked by exogenous cyclic
AMP (Hassell and Pratt, 1977). Care must be
taken, however, when interpreting the effects of
cyclic AMP since physiologically it is an intracel-
lular messenger and may therefore be mediating
differential gene expression triggered by other
events occurring at the cell surface. Martinez-
Alvarez et al. (2000) also suggested that TGF-β3
is an inducer of apoptosis during palatal fusion.
Third, there is good evidence that some of the
epithelial cells migrate from the MES into the
palatal shelf mesenchyme and differentiate into
cells indistinguishable from the mesenchymal
cells (e.g. Ferguson, 1988). Indeed, it is well
known that epithelial cells can migrate and dif-
ferentiate into mesenchymal-like cells in other

circumstances during development. Although
labelling of MES cells with vital lipophilic mark-
ers has not clarified whether such cells migrate
and/or transform into mesenchyme, in vitro
studies that involve infecting the cells with the
replication-defective helper-free retroviral vector
CXL carrying the Escherichia coli lacZ gene (thus
enabling analysis of β-galactosidase activity in
the cells and the determination of cell fate) indi-
cate that the cells of the MES transform into mes-
enchyme during palatal fusion (Martinez-Alvarez
et al., 2000).

There have been many experiments to help
clarify the nature of the epithelial-mesenchymal
interactions during fusion of the palatal shelves.
In the main, these experiments have involved
the separation and then the recombination in
culture of the epithelial and mesenchymal com-
ponents of the shelves. Overall, these experi-
ments have shown that, as with epithelial-mes-
enchymal interactions for tooth development, it
is the mesenchyme that signals epithelial differ-
entiation and behaviour (e.g. Ferguson and
Honig, 1984). The nature of this signal is con-
troversial. Figure 18 shows the medial edge
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Figure 17. Late stage of fusion of the palatal shelves immunocy-
tochemically labelled for type IV collagen and show-
ing disruption of the midline epithelial seam. x 250.
Courtesy of Professor M.W.J. Ferguson.

Figure 18. The medial edge epithelia of palatal shelves failing to
label immunocytochemically for type IX collagen
before shelf elevation. A = palatal shelves; B = epithe-
lium covering floor of the mouth. x 560. Courtesy of
Professor M.W.J. Ferguson.
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epithelia of palatal shelves labelled immunocy-
tochemically for type IX collagen before shelf
elevation (Fyfe and Ferguson, 1988). Although it
was once proposed that the palatal mesenchyme
could signal epithelial differentiation directly by
cell-to-cell contact, mesenchymal-epithelial cell
contacts are very rare during palatogenesis (Fer-
guson, 1988). It seems that ECM molecules may
provide the signal and work has been undertak-
en to assess the role of type IX collagen (Fergu-
son, 1988). Figure 18 shows that, at the earliest
stages before shelf elevation, the medial edges
of the palatal shelves label poorly for type IX
collagen compared with floor of the mouth
epithelia. Figure 19 shows the medial edge
epithelia of palatal shelves labelled immunocy-
tochemically for type IX collagen at a time when
medial edge epithelial differentiation occurs as
determined by recombination experiments. At
this stage, type IX collagen appears around the
surfaces of the medial edge epithelial cells. It is
believed that the control of the synthesis of type
IX collagen is influenced by growth factors (Fer-
guson, 1988).

Ferguson (1988), using immunocytochemical
labelling with antibodies against epidermal
growth factor receptors, has demonstrated the
presence of such receptors on the mesenchymal
cells adjacent to the MES of fusing palatal shelves.
Epidermal growth factor (EGF), or its embryonic
homologue known as transforming growth factor
α (TGF- α), is known to inhibit palatal medial
edge epithelial cell death in the presence of mes-
enchyme (Tyler and Pratt, 1980). Furthermore, it
has been shown that the synthesis of ECM mole-
cules (including type IX collagen) is stimulated by
factors such as TGF−α and TGF−β and is inhibit-
ed by fibroblast growth factors (FGF) (Sharpe and
Ferguson, 1988; Ferguson, 1988; Sharpe et al.,
1993). When palatal shelves are organ-cultured
with EGF, the medial edge of the palatal shelf
shows a nipple-like bulge, medial edge epithelial
cell death is absent, and the mesenchyme pos-
sesses increased quantities of ECM molecules (Jel-
nick and Dostal, 1974; Nanda and Romeo, 1975;
Cleaton-Jones, 1976a; Ferguson, 1988). It has
been proposed, therefore, that the palatal shelf
mesenchyme produces growth factors that either
directly signal epithelial differentiation or, by
stimulating ECM production, indirectly influence
differentiation through this matrix. Ferguson
(1988) has suggested that EGF receptors show
regional heterogeneity and that the receptors only
appear beneath the medial edge of the shelves
when the epithelial seam is degenerating.

Hyaluronan is also critical during breakdown
of the MES, providing a suitable matrix for some
of these cells to undergo epithelial-mesenchymal
transformation in order to subsequently migrate
to the oral and nasal aspects of the palate.
Hyaluronan produced by Has 2 is vital for
epithelial-mesenchymal transformation during
heart morphogenesis (Camenisch et al., 2000)
and is proposed to function in a similar manner
in the developing palate.

Recent studies have highlighted the impor-
tance of TGF−β during fusion of the palatal
shelves. TGF-β1, 2 and 3 expression during mouse
palatogenesis has been extensively studied (both
temporally and spatially) and results suggest that
TGF-βs act as regulators at palatal shelf fusion.
Immediately before palatal fusion, TGF-β3 expres-
sion is localised in the medial edge epithelium
(Pelton et al., 1990: Fitzpatrick et al., 1990). Short-
ly afterwards, TGF-β1 expression is also detected
in the medial edge epithelium but TGF-β2 expres-
sion can only be seen in the mesenchymal cells.
Furthermore, for TGF-β3 knockout mice, the TGF-
β3-null mutant fetuses develop cleft palate so that
all TGF-β3-null pups die shortly after birth (Proetzel
et al., 1995). The TGF-β3 knockout mouse is char-
acterised by appearing to have no other morpho-
logical anomalies (excepting the lung). TGF-β1
knockout mice, however, do not develop cleft
palate (Shull et al., 1992; Kulkarni et al., 1993) and
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Figure 19. The medial edge epithelia of palatal shelves labelled
immunocytochemically for type IX collagen at a time
when medial edge epithelial differentiation occurs as
determined by recombination experiments. x 500.
Courtesy of Professor M.W.J. Ferguson.



cleft palate, along with many other types of
abnormalities, is observed (but at lower incidence
rates) in TGF-β2 knockout mice (Sanford et al.,
1997). That TGF-β3 plays an important role in
palatal shelf fusion is also shown by the fact that
palate fusion fails to occur in vitro when the activ-
ity of TGF-β3 is inhibited by antisense oligonu-
cleotide or by neutralising antibody (Brunet et al.,
1995). More recently, Taya et al. (1999) reported
that mutation of the TGF-β3 gene results in cleft
palate formation and that, when palates from
transgenic mice with TGF-β3 deletions are grown
in organ culture such that shelves were placed in
homologous (+/+ vs +/+, -/- vs -/-, +/- vs +/-) or
heterologous (+/+ vs -/-, +/- vs -/-, +/+ vs +/-)
paired combinations, pairs of -/- and -/- shelves
failed to fuse while pairs of +/+ and =/+ shelves
showed complete disappearance of the MES
whereas -/- and +/+ shelves retained some rem-
nants of the MES. They also studied the ability of
TGF-β3 family members to rescue the fusion
between -/- and -/- palatal shelves in vitro by
adding to the culture medium recombinant human
TGF-β1, porcine TGF-β2, recombinant human
TGF-β3, recombinant human activin, or porcine
inhibin. It was reported that, for untreated organ
culture -/- palate pairs that would be expected to
show complete failure to fuse, TGF-β3 treatment
induced complete palatal fusion whereas TGF-β1
or TGF-β2 produced near normal fusion and

activin and inhibin had no effect. The mechanism
whereby TGF-β3 rescued the fusion was claimed
to be related to the appearance of filopodia-like
process on the surface of the MES cells that are
coated with material resembling proteoglycan.

Once fusion is complete, the hard palate ossi-
fies intramembranously from four centres of ossi-
fication, one in each developing maxilla and one
in each developing palatine bone (Sperber, 2001;
Berkovitz et al., 2002; Meikle, 2002). The maxil-
lary ossification centre lies above the developing
deciduous canine tooth germ and appears in the
eighth week of development. The palatine centres
of ossification are situated in the region forming
the future perpendicular plate and appear in the
eighth week of development. Incomplete ossifica-
tion of the palate from these centres defines the
median and transverse palatine sutures. There
does not appear to be a separate centre of ossifi-
cation for the primary palate in Man (in other
species there being a separate “premaxilla”). Fig-
ure 20 provides a coronal section through the
developing hard palate to show early ossification.

CLINICAL CONSIDERATIONS

Malformations of palatogenesis may result in the
appearance of clefts (Sperber, 2001; Berkovitz et
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Figure 20. Coronal section through the developing hard palate showing early ossification. A = developing body of maxilla; B = bone extend-
ing from body of maxilla into palate; C = nasal cavity. (Masson’s trichrome). x 160.
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al., 2002; Meikle, 2002). Clefts of the palate, like
those of the lip, are multifactorial malformations,
involving both genetic (polygenic) and environ-
mental factors. Clefts may result from distur-
bances of any of the processes involved during
palatogenesis, i.e. from defective palatal shelf
growth (e.g. Abbott et al., 1990); delayed shelf
elevation or failure of elevation (e.g. Ferguson,
1981a); defective shelf fusion or lack of degen-
eration of the MES; or failure of mesenchymal
consolidation and/or differentiation (e.g. Abbott
and Birnbaum, 1989).

The mildest form of cleft is that affecting the
uvula, such a disturbance occurring relatively late
in the process of palatal malfusion. Disturbances
occurring during the early phases of palatal
fusion can result in a more extensive cleft involv-
ing most of the secondary palate. Should the cleft
involve the primary palate, it may extend to the
right and/or left of the incisive foramen to
include the alveolus, passing between the lateral
incisor and canine teeth. Cleft palate may be
associated with cleft lip, though the two con-
ditions are independently determined. Dental 
malformations are commonly associated with a 
cleft involving the alveolus. A submucous cleft
describes a condition where the palatal mucosa is
intact, but the bone/musculature of the palate is
deficient beneath the mucosa. Less problematic
than clefts (but more common) is the retention of
epithelial remnants in the midline that eventually
become cystic.

Hypotheses to explain the mechanisms
responsible for cleft palate formation range from
genetic predisposition (e.g. Bonner and Slavkin,
1975) to the administration of teratogens (e.g.
Fraser and Fainstat, 1951). Ferguson (1981b) has
also proposed that the expression of a cleft
palate is a manifestation of phylogeny - birds
develop a physiological cleft and the oral and
nasal cavities are not separated (e.g. Shah and
Crawford, 1980). Recent research indicates that
retinoids in excess have a teratogenic effect, pro-
ducing clefts of the palate and the abnormal
appearance of “islands” of cartilage in the mes-
enchyme (Emmanouil-Nikoloussi et al., 1999;
Emmanouil-Nikoloussi et al., 2000). More recent-
ly, work by Gunston, Moxham and Emmanouil-
Nikoloussi (unpublished data) shows that all-
trans retinoic acid (RA) is the most teratogenic
isomer of RA in terms of rat palatal abnormalities,
that the time of administration of RA is more crit-
ical than dose, but that immunohistochemical
labelling for cartilage ECM molecules fails to
detect ectopic cartilage within the palates.
Ectopic localization of Sonic hedgehog protein
(Shh) in the developing rostral neural tube is also
associated with craniofacial defects (Nasrallah
and Golden, 2001). This is thought to be due to
disruption in normal genes expression patterns
(e.g. wnt-3a, wnt-4, Pax-6, HNF-3( and Ptc).

Studies using transgenic mice suggest that
many homeobox genes and transcription factors
are involved in palatogenesis. For example,
Satokata and Maas (1994) have highlighted the
possible significance of Msx1 and Winograd et
al. (1997) of Msx2. Tissier-Seta et al. (1995) have
suggested a role for Barx 1. Gendron-Maguire et
al. (1993) and Rijli et al. (1993) suggest that
Hoxa2 is important and Martin et al. (1995) have
implicated Mhox. Peters et al. (1997) have deter-
mined a role for Pax9 and Mo et al. (1997) have
reported on the significance of Dli and Dli3.
Finally, Takihara et al. (1997) suggest that there
is expression of rae28 during palatogenesis and
Takagi et al. (1998) deltaEF1. Additionally, many
cytokines (and their receptors) are also involved
in palate development. For example, TGF-
alpha/EGF receptors, TGF-β2, and TGF-β3 have
important functions (Miettinen et al., 1999; San-
ford et al., 1997; Proetzel et al., 1995; Kaartinen
et al., 1995; see also above). Furthermore, impor-
tance has also been claimed for activin-βA,
activin-receptor type II and follistatin (Matzuk et
al., 1995a, b, c). Lohnes et al. (1993, 1994) have
shown a role for retinoic acid receptor gamma
during palate development and Kurihara et al.
(1994) have reported on endothelin. Orioli et al.
(1996) have suggested an involvement of
sek4/nuk1.
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