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SUMMARY
Intraosseous access is a safe and efficient meth-

od to administer medications to patients that re-
quire advanced life support when intravenous 
access is not easily available. This study aims to 
narrow down the ideal insertion site for intraosse-
ous access within the proximal tibia in a pediatric 
population. The study utilized computed tomog-
raphy scans that were retrospectively collected 
from scans of five infant patients between four-
weeks and two-years old, seven young children 
between two-years and six-years old, and ten 
children between six-years and twelve-years of 
age. Analysis of the computed tomography scans 
started at 10mm and extended to 50mm distally 
to the tibial tuberosity at 10mm increments.

The smallest cortical thickness to medullary 
space ratio and most desirable cortical thick-
ness to anteromedial border ratio across all three 
groups – infants, young children, and child – was 
identified as 10mm inferior to the tibial tuber-
osity. Meanwhile, the largest medullary space to 

anteromedial border ratio was at 10mm inferior 
to the tibial tuberosity for the infants and young 
child groups, and at 30mm for the child group. 
This study showed that, overall, the ideal nee-
dle insertion site to gain vascular access for an 
intraosseous infusion procedure in the proxi-
mal tibial in infants, young child, and children is 
10mm distal to the tibial tuberosity. 
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INTRODUCTION 
In patients that require advanced life support, 

administration of intravenous medications is not 
always quick and easily achieved. Especially in 
neonates and infant patients, the intraosseous (IO) 
route offers a comparable and advantageous alter-
native. IO infusions have been used since the twen-
tieth century and have been included in pediatric 
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advanced support guidelines since 1988 (Clem-
ency et al., 2017). IO access is considered a safe 
and efficient method of administering all medi-
cations that can be administered intravenously 
with a comparable onset of action (Kleinman et 
al., 2010). Multiple studies have identified vari-
ous IO sites of insertion, including proximal tibia, 
proximal humerus, clavicle, sternum, and radius. 
Among the ideal insertion sites for the IO route, the 
proximal tibia can be easily palpated with surface 
landmarks and is a distance away from vital areas 
where resuscitation efforts might be required, for 
example, the chest (Ngo et al., 2009). 

The proximal tibia was reported to have a high-
er first-attempt success rate compared with other 
sites such as the humeral head (Clemency et al., 
2017). In 2003, Boon et al. studied the ideal site on 
the proximal tibia for IO needle insertion in neo-
nates. In this study, they used 18-gauge spiral nee-
dles on a total of 14 neonate cadavers (28 tibias), 
noting the ease of needle insertion and relation of 
the needle to the epiphyseal growth plate in the 
four different sites of insertion tested. They found 
that the ideal site of IO needle insertion was at least 
10mm distal to the tibial tuberosity on the antero-
medial surface; they showed that this site best fit-
ted both parameters studied. On the other hand, 
they found that sites 10mm proximal to the distal 
tuberosity and 20mm distal to the tibial tuberosity 
were resistant to needle insertion due to increased 
cortical bone thickness and resulted in a perforat-
ed epiphyseal plate respectively (Boon et al., 2003). 
Another study by Chokshi et al. (2010) had similar 
findings, as they reported that the ideal place for 
needle insertion is between 10 and 30mm distal to 
the tibial tuberosity, with the needle angled inferi-
orly 40 to 60 degrees (Chokshi et al., 2010). Previ-
ously, Ellemunter et al. (1999) reported successful 
IO resuscitation in preterm and full-term infants 
admitted to the neonatal intensive care units, with 
no major reported complications and zero failed 
insertion attempts; their chosen needle insertion 
site was between 5mm to 10mm distal to the tibial 
tuberosity on the medial surface.

The tibia is a long, weight-bearing bone that has 
important landmarks for muscle attachments. 
For example, the tibial tuberosity can be easily 
palpated approximately 50mm distal to the patel-

la in an adult population, and it is a protrusion on 
the anterior tibial surface that serves for the at-
tachment site of the patellar ligament (White and 
Folkens, 2005). The tibia develops through a pro-
cess called endochondral ossification, where ossi-
fication starts from the cartilaginous model of the 
tubular bone and continues till birth. The growth 
plates (physis) of the tibia are situated at the prox-
imal and distal ends between the epiphysis and 
diaphysis, known as the shaft of the tibia. Longitu-
dinal bone growth ensues until late adolescence, 
marked by the ossification of the growth plate and 
fusion of epiphysis and metaphysis, which is the 
portion of the bone that flairs outwards (Monsell 
et al., 2018). 

Although IO infusion is a relatively safe and easy 
route for resuscitation, there are some important 
contraindications to keep in mind. These include 
bone diseases such as osteogenesis imperfecta, 
osteoporosis, osteomyelitis, fractured lower limb, 
and cutaneous infection in the area. In addition, 
difficulty identifying landmarks and accessing 
the area due to inflammation, any past surgical 
history on the tibia or knee, and any mass or ma-
lignancy near the insertion site would be consid-
ered contraindications for IO resuscitation. Last-
ly, if the needle is inserted incorrectly, potential 
complications include subcutaneous infusion, 
osteomyelitis, extravasation of fluid, infection at 
injection site, and compartment syndrome (Ryder 
et al., 1991; Ngo et al., 2009). This study focuses 
on narrowing down the ideal insertion site for the 
IO route to better guide medical providers and 
emergency responders. 

MATERIALS AND METHODS

Patients and Methods

The sample consisted of CT scans of 5 infant 
patients between four weeks and two years old, 
7 young child patients between two years and six 
years, and 10 child patients between six years and 
twelve years of age. These were retrospective-
ly obtained from the Department of Radiology at 
the Steve Biko Academic Hospital in South Africa, 
with permission from both the Head of the De-
partment of Radiology and the CEO of the hospital 
(Ethics clearance: 447/2018). The mean sample 
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age for each age category is presented in Table 1. 
The study excluded patients that were diagnosed 
by the consulting radiologist to either have an ab-
normal degree of kyphosis and/or scoliosis, obvi-
ous visceromegaly or a space-occupying lesion. 
Additionally, sex and ancestry were not consid-
ered as an exclusion factor.

RadiAnt, a Digital Imaging and Communications 
in Medicine (DICOM) viewer, was used to analyze 
the CT scans starting at the plane of the tibial tu-
berosity and extending 50mm inferior to the tibi-
al tuberosity at 10mm increments. The following 
measurements were used (see Fig. 1).

The width of the anteromedial border of the tib-
ia was determined by measuring the distance be-
tween the anterior and the medial border of the 

tibia. By measuring from the outer cortical layer 
of the anteromedial surface to the inner cortical 
layer, the cortical thickness of the tibial bone was 
determined. The medullary space of the tibia was 
measured from the inner cortical layer of the an-
teromedial surface to the opposite inner cortical 
layer, perpendicular to the anteromedial surface 
(Fig. 2).

Statistical Analysis

The data were summarized using descriptive 
statistics, including mean, standard deviation and 
95% confidence intervals. Measurements from 
the respective left and right sides were compared 
using a paired t-test or Wilcoxon Signed Rank test, 
depending on the distribution of the data.

Table 1. Age (in days) of the cadavers used to measure the dimensions of the proximal tibia. (n= number of individuals).

n Range Minimum Maximum Mean Std. Deviation

Infants 5 670 34 704 377.20
(1 year)

250.06
(0.7 years)

Young Child 7 744 1402 2146 1796.71
(4.9 years)

252.69
(0.7 years)

Child 10 1876 2478 4354 3267.70
(9 years)

628.67
(1.7 years)

Fig. 1.- A. Schematic representation of IO needle insertion at levels 10, 20, 30, 40, and 50mm respectively inferior to the tibial 
tuberosity on the anteromedial surface of the leg. B. Schematic frontal view of the approximate site of IO needle insertion on the 
proximal tibia.
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RESULTS
The sample size for the infants was insufficient 

for a Paired t-test and a Wilcoxon Signed Rank test 
to reveal any significant difference between the 
measurement pairs involved. As such, each mea-
surement pair was compared in order to deter-
mine whether there was any clinically significant 
difference between the two. If no clinical signif-
icance was present, the applicable left and right 
sides were then combined. However, for both the 
young child and child, a Paired t-test and the Wil-
coxon Signed Rank test was conducted and re-
vealed no significant difference between the mea-
surement pairs involved. The applicable left and 
right sides were then combined. Descriptive sta-
tistical analysis for the combined measurements 
together with a 95% confidence interval is shown 
for each of the respective measurements.

Infants (4 weeks – 2 years)

Anteromedial surface of the Tibia

At 10mm inferior to the tibial tuberosity, the 
largest anteromedial surface was observed with 
a mean distance of 13.8 ± 4.4mm (mean ± stan-

dard deviation), and the smallest average antero-
medial surface was determined at 30mm inferior 
to the tibial tuberosity. With a confidence interval 
of 95%, the anteromedial surface of the tibia at 
10mm ranged from 12.8 to 19.3mm (Table 2).

Cortical thickness

At 50mm inferior to the tibial tuberosity, the 
thickest cortical thickness was observed, and 
the smallest average cortical thickness of 3.1 ± 
0.3mm was measured at 10mm inferior to the tib-
ial tuberosity (Table 2).

Medullary space

The largest medullary space was seen at 10mm 
inferior to the tibial tuberosity with a mean diam-
eter of 5.1 ± 2.3mm. With a confidence interval 
of 95%, the medullary space of the tibia at 10mm 
ranged from 4.4 to 7.9mm (Table 2).

Young Child (2-years to 6-years)

Anteromedial surface of the Tibia

The largest anteromedial surface was seen 
10mm inferior to the tibial tuberosity at a mean 
distance of 23.4 ± 4.2mm, with a confidence inter-

Fig. 2.- A. Transverse CT scan distal to the tibial tuberosity in a 3-year-old child. The measurements show the anteromedial surface, 
cortical thickness, and medullary space. B. Indicate line at which horizontal section was determined.
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val of 95%, the anteromedial surface of the tibia at 
10mm ranged from 20.9 to 25.9mm. At 50mm be-
low the tibial tuberosity, the anteromedial surface 
ranged between 17.1 to 20.4mm (Table 3).

Cortical thickness

The smallest average cortical thickness of 3.0 
± 1.3mm was measured at 10mm inferior to the 
tibial tuberosity, ranging from 2.2 to 3.8mm with 
a confidence interval of 95% at 10mm (Table 3).

Medullary space

The largest medullary space was seen at 10mm 
inferior to the tibial tuberosity with a mean diam-
eter of 14 ± 3.2mm, while the smallest average 
medullary space was measured at 50mm inferior 
to the tibial tuberosity with an average diameter of 
10.2 ± 2.9mm. With a confidence interval of 95%, 
the medullary space of the tibia at 10mm ranged 
from 12.1 to 16.0mm (Table 3).

Child (6 years to 12-years)

Anteromedial surface of the Tibia

The largest anteromedial surface was seen 
10mm inferior to the tibial tuberosity at a mean 

distance of 27.7 ± 4.4mm. With a confidence in-
terval of 95%, the anteromedial surface of the tib-
ia at 10mm ranged from 25.6 to 29.7mm, while 
at 50mm inferior to the tibial tuberosity it ranged 
from 21.3 to 25.3mm (Table 4).

Cortical thickness

The thinnest cortical thickness was observed at 
10mm and 50mm inferior to the tibial tuberosity 
at a mean thickness of 3.2 ± 0.6mm, and the thick-
est average cortical thickness of 3.3 ± 0.8mm was 
measured at 20, 30, and 40mm inferior to the tib-
ial tuberosity. With a confidence interval of 95%, 
the cortical thickness of the tibia at 30mm ranged 
from 2.9 to 3.6mm (Table 4).

Medullary space

The largest medullary space was seen at 10mm 
inferior to the tibial tuberosity with a mean diam-
eter of 15.9 ± 3.0mm, while the smallest average 
medullary space was measured at 50mm inferi-
or to the tibial tuberosity with an average diam-
eter of 12.9 ± 2.9mm. With a confidence interval 
of 95%, the medullary space of the tibia at 10mm 
ranged from 14.5 to 17.3mm, and at 50mm be-

Table 2. Descriptive statistical analysis and 95% confidence interval in mm for the combined left and right sides of the tibia in 
infants. (n= number of individuals).

mm n Range Min Max
Mean

Std. Deviation
95% Confidence Interval of Mean

Statistic Std. Error Lower Upper

Anteromedial surface

10 7 11.9 7.7 19.5 13.8 1.7 4.4 12.8 19.3

20 7 9.4 8.8 18.2 13.5 1.2 3.0 11.2 17.8

30 7 6.1 10.6 16.7 13.0 1.0 2.6 10.4 17.1

40 6 7.4 9.9 17.3 13.4 1.1 2.8 9.5 17.3

50 6 6.8 10.5 17.3 13.6 1.0 6.0 10.2 16.9

Medullary space

10 8 7.3 2.2 9.4 5.1 0.8 2.3 4.4 7.9

20 7 6.0 2.1 8.1 4.1 0.7 1.9 2.6 6.4

30 7 4.7 2.6 7.3 3.6 0.6 1.7 1.7 5.5

40 6 4.3 2.3 6.6 3.3 0.7 1.7 1.6 5.1

50 6 3.4 2.8 6.2 4.2 0.6 1.5 2.7 5.8

Cortical thickness

10 8 2.2 2.0 4.2 3.1 0.3 0.7 2.8 3.9

20 7 2.3 2.3 4.5 3.3 0.3 0.8 2.7 4.2

30 7 3.0 1.9 4.9 3.5 0.4 1.0 3.1 4.6

40 6 2.3 2.9 5.1 3.8 0.3 0.8 3.0 4.7

50 6 1.6 3.0 4.5 3.6 0.3 0.6 3.0 4.3
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Table 3. Descriptive statistical analysis and 95% confidence interval in mm for the combined left and right of the tibia in young 
children. (n= number of individuals).

mm n Range Min Max
Mean

Std. Deviation
95% Confidence Interval of Mean

Statistic Std. Error Lower Upper

Anteromedial surface

10 13 13.0 16.9 29.9 23.4 1.2 4.2 20.9 25.9

20 13 10.8 16.1 26.9 21.7 1.0 3.6 19.56 23.9

30 13 11.1 15.1 26.2 20.6 1.0 3.6 18.4 22.7

40 13 8.9 14.8 23.7 19.4 0.8 3.0 17.6 21.2

50 13 8.3 14.9 23.2 18.7 0.8 2.7 17.1 20.4

Cortical thickness

10 13 5.1 1.5 6.6 3.0 0.4 1.3 2.2 3.8

20 13 4.0 1.6 5.5 2.9 0.3 1.0 2.3 3.6

30 13 3.6 1.4 5.0 3.0 0.3 0.9 2.4 3.5

40 13 2.8 1.7 4.6 2.9 0.2 0.8 2.4 3.4

50 13 2.8 1.9 4.7 2.9 0.2 0.8 2.4 3.5

Medullary space

10 13 10.5 9.4 19.9 14.0 0.9 3.2 12.1 16.0

20 13 9.5 9.1 18.6 13.0 0.8 3.1 11.2 14.9

30 13 8.1 8.2 16.3 11.9 0.8 2.8 10.2 13.6

40 13 8.6 7.4 16.0 11.0 0.8 2.7 9.4 12.7

50 13 8.4 6.5 14.9 10.2 0.8 2.9 8.4 11.9

Table 4. Descriptive statistical analysis and 95% confidence interval in mm for the combined left and right of the tibia in children. 
(n= number of individuals).

mm n Range Min Max
Mean

Std. Deviation
95% Confidence Interval of Mean

Statistic Std. Error Lower Upper

Anteromedial surface

10 20 17.2 20.6 37.8 27.7 1.0 4.4 25.6 29.7

20 20 16.0 20.3 36.3 26.4 1.0 4.4 24.4 28.4

30 20 15.1 19.9 35.0 25.2 1.0 4.4 23.1 27.2

40 20 15.5 17.9 33.4 23.8 1.0 4.3 21.8 25.8

50 20 14.8 18.3 33.1 23.3 1.0 4.3 21.3 25.3

Cortical thickness

10 20 2.3 2.3 4.7 3.2 0.1 0.6 2.9 3.5

20 20 3.5 2.4 5.9 3.3 0.2 0.8 2.9 3.6

30 20 2.9 2.5 5.4 3.3 0.2 0.8 2.9 3.6

40 20 3.6 2.4 6.1 3.3 0.2 0.8 2.9 3.7

50 20 2.3 2.5 4.8 3.2 0.1 0.6 2.9 3.5

Medullary space

10 20 12.4 9.3 21.7 15.9 0.7 3.0 14.5 17.3

20 20 11.7 8.7 20.4 15.1 0.7 3.0 13.7 16.5

30 20 14.2 5.4 19.6 14.5 0.7 3.3 12.9 16.0

40 20 15.5 3.0 18.5 13.5 0.7 3.3 11.9 15.0

50 20 12.8 4.5 17.3 12.9 0.7 2.9 11.6 14.3
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low the tibial tuberosity it was between 11.6 and 
14.3mm (Table 4).

DISCUSSION
This study builds on the previous work of Boon 

et al. (2003) and van Tonder et al. (2022) to deter-
mine the ideal tibial IO insertion sites. Although 
the studies conducted by Boon et al. (2003) and 
van Tonder et al. (2022) focused on newborn in-
fants, this study expanded this to three catego-
ries; infants (28 days to 2 years), young children 
(2 years to 6 years), and children (6 years to 12 
years). Boon et al. (2003) suggested that the best 
insertion site on their sample size of 14 neonatal 
cadavers was at least 10mm distal to the tibial tu-
berosity to avoid injury to the epiphyseal growth 
plate (Boon et al., 2003). The study by van Tonder 
et. al. (2022) on 15 neonatal cadavers showed 
that vascular access was ideal at 10mm inferior 
to the tibial tuberosity (van Tonder et al., 2022). 
On further application, this study aimed to prove 
this efficacy on older children to apply this to their 
guidelines as well. To do so, the ratios between the 
cortical thickness and the size of the medullary 
space were used to find the most suitable loca-
tion and ease of insertion for each age category. 
This study’s results align with previous neonatal 
research, indicating that 10mm distal to the tibi-
al tuberosity is still the optimum insertion point, 
even in children up to 12 years old (n=22). These 
measurements should be emphasized as the 
epiphyseal growth plates in all three age groups 
have not yet closed, and the ideal needle insertion 
site is crucial to avoid damage to the epiphyseal 
growth plates (Crowder and Austin, 2005).

It is important to recognize the necessity in 
gaining quick vascular access in children under 
urgent care, especially those that are in dehydrat-
ed or shocked states (Boon et al., 2003; Chokshi et 
al., 2010; Clemency et al., 2017). However, in those 
conditions, hypovolemia, vasoconstriction, and 
peripheral vessel collapse are possible, increas-
ing venipuncture difficulty (De Sá et al., 2012). 
This requires a mix of the provider’s skills and the 
patient’s stability, with timely parenteral access 
required before it is associated with an increase 
in morbidity (Neuhaus, 2014). Thereafter, the IO 
infusion technique should be considered where 

it reaps its benefits in those difficult-venous-ac-
cess pediatric cases (Neuhaus, 2014), including 
when umbilical venous catheterization (UVC) is 
not possible due to the umbilical cord drying out 
(Scrivens et al., 2019). Any infusible intravenous 
substance can be administered intraosseously, 
which indicates the value of IO administration in 
life-threatening cases, especially neonates, where 
drug delivery is critical for survival (Dornhofer 
and Kellar, 2022). In those cases, IO access can be 
achieved in as few as 20 seconds compared to the 
challenging intravenous access, which is when it 
should be prioritized (Dornhofer and Kellar, 2022). 
Its plausibility emerged due to the high vascular-
ization in bones, especially the red bone marrow, 
which allowed for quick fluid infusions into the 
bloodstream bypassing the absorption process 
(De Sá et al., 2012). In addition, blood collection is 
possible from these sites (De Sá et al., 2012). How-
ever, upon tibial metaphyseal examination, it was 
found that there was trabecular bone instead of 
a developed marrow cavity in neonatal patients, 
making aspiration difficult. Having said that, the 
decreased bone marrow cavity seemed to have a 
positive association with needle stability (Eifinger 
et al., 2021). There was less dislodgement of the 
IO needle during angled insertion (Eifinger et al., 
2021). In this study, cross-sectional dimensions 
of the tibia were obtained starting with 10mm in-
ferior to the tibial tuberosity and progressing at 
10mm intervals to determine the optimal inser-
tion site.

The aim of the needle insertion is to maximize 
vascular access while minimizing the risk of harm-
ing the epiphyseal plate. Hence, it is more favor-
able to have a larger anteromedial surface (due to 
larger surface area) and higher medullary space 
likewise (since this space is what the needle should 
be inserted into). Whereas, for the cortical thick-
ness it is more favorable to have as little as pos-
sible to encounter the least resistance with nee-
dle insertion. The anteromedial surface remains 
the largest at 10mm across the three groups (in-
fant, young child, and child), measuring 13.8mm, 
23.4mm, and 27.7mm, respectively. Similarly, the 
medullary space follows the same trend, with the 
biggest measurement for all three groups being at 
10mm, measuring 5.1mm, 14.0mm, and 15.9mm, 
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respectively (Table 5). However, the cortical thick-
ness hardly varies within each group and across 
groups. Therefore, taking the ratios of these three 
measurements is a more useful tool to have an in-
dication of the ideal proportions of these measure-
ments to direct the needle insertion site. 

The smallest (most desirable) cortical thickness 
to medullary space ratio across all three groups – 
infants, young children, and child – was at 10mm. 
The largest (least desirable) cortical thickness to 
medullary space ratios across the same groups 
was at 40mm, and 50mm for young child and chil-
dren, respectively (Table 6). This study’s results 
are comparable to those of Boon et al. (2003) and 
van Tonder et al. (2022), with the conclusion that 
the ideal insertion site for IO needle insertion is 
10mm distally inferior to the tibial tuberosity 
border. In addition, they suggest angling the nee-
dle inferiorly to avoid damage to the epiphyseal 
plates (Boon et al., 2003). Along the same lines, 
the smallest (most desirable) cortical thickness to 

anteromedial border ratio across the three groups 
– infants, young child, and child – was again at 
10mm. Lastly, the largest (most desirable) med-
ullary space to anteromedial border ratio for the 
three groups was at 10mm for the infants and 
young child groups, and at 30mm for the child 
group. The smallest (least desirable) medullary 
space to anteromedial border ratio for the infants’ 
group was at 40mm, whereas, for the young child 
and child groups it was at 50mm for both (Table 6).

For clinicians, anatomical landmarks such as 
the tibial tuberosity can be of great help in direct-
ing needle insertion via the IO route. Harcke et al. 
(2020) reported the ideal needle insertion site was 
one finger below the tibial tuberosity. In this study, 
the difference between the various age groups is 
highlighted as several authors (Ryder et al., 1991; 
Ellemunter et al., 1999; Boon et al., 2003; Chokshi 
et al., 2010; Neuhaus, 2014; Scrivens et al., 2019; 
Dornhofer and Kellar, 2022) have found these tib-
ial landmarks advantageous. Eifinger et al. (2021) 

Table 5. Mean statistic of the measurements at 10mm interval inferior to the tibial tuberosity for an infants, young child, and child.

Infant (4-week to 2-years)

Anteromedial surface (mm) Cortical thickness (mm) Medullary space (mm)

10mm 13.8 3.1 5.1

20mm 13.5 3.3 4.1

30mm 13.0 3.5 3.6

40mm 13.4 3.8 3.3

50mm 13.6 3.6 4.2

Young child (2-years to 6-years)

Anteromedial surface (mm) Cortical thickness (mm) Medullary space (mm)

10mm 23.4 3.0 14.0

20mm 21.7 2.9 13.0

30mm 20.6 3.0 11.9

40mm 19.4 2.9 11.0

50mm 18.7 2.9 10.23

Child (6-years to 12-years)

Anteromedial surface (mm) Cortical thickness (mm) Medullary space (mm)

10mm 27.7 3.2 15.9

20mm 26.4 3.3 15.1

30mm 25.2 3.3 14.5

40mm 23.8 3.3 13.5

50mm 23.3 3.2 12.9
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compared measurements of humerus, tibia, and 
femur bones in neonates, infants, and children in 
a cadaveric and CT-based study; of particular rel-
evance to this study, they found that in contrast to 
the distal tibia, the proximal tibia had the largest 
diameter and cross-sectional area. Additionally, 
the tibial bone is more oval shaped in its proximal 
end, making the proximal tibia ideal for IO access 
by providing more surface area for the needle in-
sertion (Eifinger et al., 2021).

CONCLUSION
Considering the analysis conducted in this 

study, it is evident that determining the ideal tibial 
IO insertion sites for infants, young children, and 
children holds significant clinical implications. By 
building upon prior research and extending the 
investigation across multiple age categories, this 

study not only reaffirms but also expands upon 
the findings of previous studies conducted on neo-
natal cadavers. This study showed that the ideal 
needle insertion site to gain vascular access in IO 
infusions in infants, young children, and children 
is at 10mm distal to the tibial tuberosity, as com-
pared with all other more distal insertion sites an-
alyzed such as at 20, 30, 40, and 50mm. This was 
shown by obtaining the lowest cortical thickness 
to medullary space ratio, the lowest cortical thick-
ness to anteromedial surface ratio, and one of the 
largest medullary spaces to anteromedial surface 
ratio, all at the 10mm insertion site across the 
three age groups. The consistent identification of 
the 10mm distal to the tibial tuberosity as the op-
timal insertion point underscores the robustness 
and generalizability of this conclusion across var-
ious pediatric age groups, emphasizing its practi-
cal relevance and applicability in clinical settings.

Table 6. Ratios of the mean distances between measurements for an infants, young child, and child. 

Infant

Cortical thickness / 
Medullary space*

Cortical thickness / 
Anteromedial border*

Medullary space / 
Anteromedial border**

10mm 0.61 0.22 0.37

20mm 0.80 0.24 0.30

30mm 0.97 0.27 0.28

40mm 1.15 0.28 0.25

50mm 0.86 0.26 0.31

Young child

Cortical thickness / 
Medullary space*

Cortical thickness / 
Anteromedial border*

Medullary space / 
Anteromedial border**

10mm 0.21 0.13 0.60

20mm 0.22 0.13 0.60

30mm 0.25 0.15 0.58

40mm 0.26 0.15 0.57

50mm 0.28 0.16 0.55

Child

Cortical thickness / 
Medullary space*

Cortical thickness / 
Anteromedial border*

Medullary space / 
Anteromedial border**

10mm 0.20 0.12 0.57

20mm 0.22 0.13 0.57

30mm 0.23 0.13 0.58

40mm 0.24 0.14 0.57

50mm 0.25 0.14 0.55

* Smaller values are better
** Bigger values are better
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Limitations

Obtaining CT scans of healthy pediatric patients 
is not easy, as for this demographic group data 
such as weight and height of patients is not always 
regularly available. Hence, the results within this 
study may be limited by the small sample size. To 
locate the optimum insertion site, this study uti-
lized ratio comparisons between measurements, 
whereas previous studies only used mean diame-
ters, which may affect comparability.
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