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SUMMARY
The cerebrum is responsible for motor, sensory 

and autonomic activities of the human body, and it 
is believed that fluoride exposure to the biological 
system can impede these functions. Therefore, 
it is imperative to introduce melatonin to limit 
the extent of fluoride toxicity on the cerebrum 
and understand the mechanism involved in the 
aforementioned process. Thirty-two rats were 
randomly selected into 4 groups (n=8, per group). 
Groups I-IV received oral administration of 
0.2ml of normal saline (NS), 500ppm of sodium 
fluoride (NaF), concurrent administration of 
sodium fluoride and melatonin (NaF+MLT), and 
sodium fluoride before melatonin (NaF-MLT) 
for fourteen days respectively. At the end of 
these treatments, the rats were euthanized and 
cerebral tissues were excised for histological, 
histochemical and biochemical analyses. Sodium 
fluoride distorted the shapes and size of the cells 
and caused constriction of the blood vessels, as 
well as presence of vacuolations in the cells of the 

pyramidal layer of the cerebral cortex. However, 
melatonin was able to restore the cytoarchitecture 
of cells of the pyramidal layer of the cerebral 
cortex when administered concurrently and 
after the administration of sodium fluoride (NaF) 
respectively. Also, melatonin regulated the activities 
of Superoxide dismutase, Malondialdehyde and 
Glutathione peroxidase in the cerebrum. Sodium 
fluoride causes neurodegeneration in the cerebral 
cortex, and exogenous melatonin can ameliorate 
the injury caused by sodium fluoride on the 
cerebral cortex. 
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INTRODUCTION
Fluoride, a derivative from the element fluorine, 

is associated to form insoluble complexes with 
cations like sodium, magnesium, aluminium or 
calcium (Whitford et al., 1997). These formed 
complexes have potential roles in biological and 
toxicological processes (Bigjay et al., 1987). Sodium 
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fluoride is an ionic compound formed from sodium 
ion (Na+) and fluoride ion (F+) (ASTDR, 2003; Wells, 
1984). Some of the beneficial role of sodium fluoride 
is that it can be used as both a dietary supplement 
and multivitamin (Thomson/Micromedex, 2006; 
McEvoy, 2006). The toxicity effects of fluoride have 
been reported in various tissues via cell enzyme 
inhibition and activation, depending on the type 
of the enzyme involved (Adamek et al., 2005, 
Mendoza-Schulz et al., 2009). Excessive exposure 
to fluoride brings about increase in the production 
of anion superoxide (O2−) (Garcia-Montalvo et 
al., 2009; Hassan and Yousef, 2009) and other 
hydroxyl radicals that may initiate hazardous 
effects of fluoride (Urbansky, 2002), ER stress and 
reactive oxygen species (ROS) production (Hassan 
and Yousef, 200; Lui et al., 2003; Sireli and Bulbul, 
2004). Fluoride is also known to cross the blood-
brain barrier (BBB) to cause neuronal degeneration 
resulting in central nervous system (CNS) 
dysfunction (Claro et al., 1990). Myelin splitting, 
vacuolation of mitochondrial, compressed Golgi 
cisternae, dilatation, and scattering of the rough 
endoplasmic reticulum of neurons were all 
affected after treatment with sodium fluoride on 
the brain (Reddy et al., 2011). Furthermore, the 
use of sodium fluoride in the treatment of water 
and as an additive in toothpaste is still frequent, 
and it is known to cause a deleterious effect (low 
intellectual coefficient, neurodegeneration) in the 
brain (Chauhan et al., 2014). The effect of fluoride 
on the cerebral cortex of both neonatal and adult 
rats has been established to show loss of cellular 
layer and major neurodegeneration changes in 
the motor cortex (Shivaraiashankara et al., 2002; 
Shashi, 2003).

Melatonin is an indoleamine that is secreted 
by the pineal gland of the brain to influence the 
sleep and wake cycle (Choi, 2013), also known as 
the hormone of darkness (Master-Israilov et al., 
2015), and known to have numerous functions 
such as antioxidant, neuroprotective, anti-
inflammatory, anti-apoptotic, or regulatory of 
energy balance. It is known to freely permeate 
all morphophysiological barrier of cells in any 
organ (Shida et al., 1994; Reiter, 1996) and to be 
concentrated in free-radical generating tissues to 
prevent potential damage (Reiter, 2000).

Although it has been established that fluoride 
have the ability to cause deleterious effects 
ranging from learning and memory deficiency 
to motor activity impairment (Saad El-Dien et al., 
2010; Nasir and Asad, 2013), treatment against 
this effect has not been established, however. 
Therefore, it is imperative to understand the 
possible mechanism of exogenous melatonin 
against the deleterious effects of fluoride on the 
cerebrum.

MATERIALS AND METHODS 

Chemicals and Drugs

Melatonin: Melatonin in its tablet form was 
obtained from a local Pharmaceutical Company 
and produced by Good Neighbour Pharmacy, 
Broadway industries, United State of America 
(ABC# 10148547). Melatonin was subsequently 
dissolved in 0.9 ml of Normal saline (Petri et al., 
2011). 

Sodium Fluoride: Sodium fluoride salt was 
obtained from Denis store at Taiwo Road in Ilorin 
and produced by Guangdong Guanghua Chemical 
factory co. ltd. Shanton Guangdong, China 
(#515000). Oxidative stress parameters (MDA), 
superoxide dismutase (SOD) using SOD assay 
kit, a product of the Cayman Chemicals, 1180 E. 
Ellsworth Rd. Ann Arbor, MI. the USA. Item No: 
706002, and glutathione GSH using GSH Assay 
Kit (Colorimetric) Catalog Number KA0797 from 
Abnova. Sodium fluoride was later administered 
through drinking water to the animals.

Experimental Design

Forty rats weighing between 150-200g were 
used for this study with free access to food and 
water ad libitum, and exposed to normal light/dark 
cycle and normal room temperature/ humidity. 
Experimental protocols were in strict compliance 
with the guideline for animal research, as detailed 
in the NIH Guidelines for the Care and Use of 
Laboratory Animals (2011) and approved by the 
ethical committee of the University of Ilorin, Ilorin 
(UERC/ASN/201/856).

The animals were randomly divided into four 
groups (I- IV), which received oral administration 
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of 0.2ml of normal saline (NS), 500ppm of sodium 
fluoride (Kour and Singh, 1980) (NaF), (MLT), 
concurrent administration sodium fluoride and 
melatonin (NaF+MLT), and sodium fluoride 
before melatonin (NaF-MLT) respectively. Note 
10 mg/kg of melatonin was given according to 
Bustos-Obregón et al., 2013).

Tissue Collection 

All antibodies were procured from Dianova 
(GmbH/Warbugstr. 45/20354 Hamburg. Also, 
reagents and buffers used in this study were 
molecular biology grade (99.9% pure) from Sigma-
Aldrich. At the end of the various treatments, i.e., 
twenty-four hours later, the animals were sedated 
with intramuscular administration of 20 mg/kg of 
ketamine perfused through the heart (Ajao et al., 
2010), and cerebral tissues were excised.

Histological/Histochemical procedures

The excised cerebral tissue was initially fixed 
in four percent paraformaldehyde overnight 
after extraction, and later transferred to 30% 
sucrose solution, before taken for histological and 
histochemical analyses, which were Hematoxylin 
and Eosin stain to demonstrate the general 
cytoarchitecture, and Cresyl Fast Violet stains 
to demonstrate the presence of Nissl bodies 
respectively.

Determination of Biochemical Parameters

0.1 g of the cerebrum was extracted from the 
rest of the brain and homogenized in 0.4 ml of five 
percent sucrose solution; the tissue was further 
centrifuged at 3000 rpm for 10 minutes, and the 
clear supernatant was separated into plain bottles. 
The supernatant was later taken to determine 
the level of oxidative stress using Superoxide 
dismutase, malondialdehyde and Glutathione 
peroxidase enzymes-linked immunosorbent 
assay commercial kit (ELISA). 

Data Analysis

All data were expressed as mean ± standard 
error of the mean. Differences among control and 
the experimental groups were considered with 
P<0.05 as statistically significant, using one-way 

analysis of variance (ANOVA), followed by Tukey 
post hoc test to determine the differences between 
the groups. The statistical tests were performed 
using GraphPad Prism version 5.0.

RESULTS

Qualitative results

Cytological arrangement after exposure to 
fluoride and melatonin 

The control group showed a normal 
cytoarchitecture pattern with presence of normal 
granular cells (NGC), and the presence of glial 
(GC) (Fig. 1), densely stained Nissl substance 
represented (NC) (Fig. 2). Sodium fluoride (NaF) 
slide showed presence of damaged cells with 
shrunken nucleus (Pyknotic cell (PC)), presence of 
pericellular halos (PH), large-sized granular cells 
(Fig. 1), and sparsely stained Nissl substance with 
the presence of vacuolations; pyknotic cells (PC) 
(Fig. 2). Sodium fluoride and melatonin (NaF+MLT) 
concurrent group showed cells to have normal 
cytoarchitecture (NC, NPYC), spindle-shaped 
pyramidal cell (DPYC), pericellular halos (PH) 
(Fig. 1) densely stained (NC) and sparsely stained 
(SC) Nissl substance (Fig. 2); Sodium fluoride-
melatonin (NaF-MLT) group showed some normal 
granular cell (NC, NGC) and shrunken cell (PC) 
(Fig. 1) and densely stained (NC), sparsely stained 
(SC) Nissl substance and pyknotic appearance 
(PC) (Fig. 2).

Quantitative results 

The effects of fluoride and melatonin using 
oxidative stress markers

The activity of SOD in the cerebral cortex of the 
animals that received sodium fluoride (NaF) group 
showed a significant decrease compared to the 
groups that received melatonin as treatment plan; 
Table 1. In addition, the concentration of the MDA 
in the cerebral cortex of the control (NS), sodium 
fluoride+melatonin (NaF+MLT) and sodium 
fluoride-melatonin (NaF-MLT) animals showed 
significance decrease as compared to sodium 
fluoride (NaF) group; Table 1. Also, the activity of 
glutathione in the cerebral cortex of control (NS), 
sodium fluoride+melatonin (NaF+MLT), sodium 
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fluoride-melatonin (NaF-MLT) animals showed 
statistical significance increase as compared to the 
sodium fluoride (NaF) group only. Furthermore, 

there was no statistically significant difference 
between NaF+MLT, NaF-MLT groups as compared 
to control (NS) group Table 1. 

Fig. 1.- Haematoxylin and Eosin stains showing the general cytoarchitecture of the pyramidal layer of the cerebrum of rats. NGC- Normal granular 
cell; GC- Glia cell; PC- Pyknotic cell; NC- Normal cell; NPYC- Normal pyramidal cell; DPYC- Damaged pyramidal cell; PH- Pericellular halos; PC-CBV- 
Pyknotic cell with constricted blood vessel; CBV- Constricted blood vessel. Scale bars = 15 µm.

Fig. 2.- Cresyl fast violet stain showing the arrangement of Nissl substance in the pyramidal layer of the cerebrum of rat. NC- Densely stained Nissl 
substance; PC- Pyknotic cell; SC- Sparsely stained Nissl substance. Scale bars = 15µm.
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DISCUSSION
The pyramidal cells in the cerebral cortex showed 

degenerative changes after administration of 
sodium, which affected cellular arrangement 
by inducing the opening of the permeability 
transition pore and inhibiting the cell membrane 
potential (Mendoza-Schulz et al., 2009; Chauhan 
et al., 2014; Anuradha et al., 2001; Geeraerts 
et al., 1986; Mullenix et al., 1995; Shashi and 
Kumar, 2016). The ameliorative changes seen 
were the result of the administration of exogenous 
melatonin against neural inflammation 
and apoptotic properties of sodium fluoride 
neurotoxicity, by acting on some proteins that 
are involved in the protection of the brain and 
regulation of its receptors: i.e., melatonin was 
able to rescue the neural cells through activation 
of their receptors. (Dun-Xian, 2016; Wang et al., 
2009; Tapias et al., 2009; Rao et al., 2010).

The cellular components, the ribosome and 
endoplasmic reticulum, which are the major sites 
of protein synthesis in the neuron, were studied 
by Nissl staining. There was evidence of sparsely 
stained Nissl bodies due to the loss of the rough 
endoplasmic reticulum, which is caused by the 
effect of sodium fluoride. Furthermore, it has 
been suggested that fluoride degenerates the cell 
bodies, and this causes the rough endoplasmic 
reticulum to become scattered (Saad El-Dien et al., 
2010; Zhan et al., 2006; Zhang et al., 1999). Also, 
Reiter suggested that fluoride causes the rough 
endoplasmic reticulum to become scattered. 
However, the treatment with melatonin was able 
to reduce disintegration and dispersal of Nissl 
bodies, i.e., reducing chromatolysis in these cells 
by up-regulating the neurotrophic hormone like 
BDNF, synapsin 1 (Jing et al., 2017).

Sodium fluoride has been established to 
decrease some enzyme activity in the cells by 
increasing reactive oxygen species (ROS) in the 
mitochondria, leading to cellular damage. In this 
study, the level of superoxide dismutase (SOD) in 
the group administered sodium fluoride (NaF) and 
the group which received the treatment before 
inducing (MLT-NaF) sodium fluoride decreased. 
However, the treatment with melatonin suggests 
that melatonin through its antioxidant property 
was able to increase superoxide dismutase 
level, which inhibits the production of ROS, 
thereby inhibiting oxidative stress and cellular 
damage. These findings also buttress the fact 
that melatonin increases antioxidant level by 
mopping/ scavenging of free radicals produced 
(Reiter, 2000; Zhang et al., 2003; Reiter et al., 
2007; Meda et al., 2014; Ajoke et al, 2020). 

The level of glutathione was also reduced in the 
group administered sodium fluoride (NaF), but the 
administration of melatonin was able to increase 
the level of glutathione in the cerebral cortex. It 
can be suggested that melatonin, through its anti-
oxidant property by the importation of cystine for 
the biosynthesis of glutathione through the cystine 
glutamate antiporter (system Xc) and exportation 
of glutamate, leads to inhibition of oxidative 
stress, which means that melatonin establishes 
the antioxidant activity through the synthesis and 
transport of cysteine (Gupta et al., 2003; Clarke et 
al., 2012; Floreani et al., 1997; Ajoke et al, 2020).

Sodium fluoride can induce lipid peroxidation, 
which attacks membrane phospholipid and 
reduces fatty acid concentration. There was a 
significant increase of malondialdehyde (MDA) in 
the sodium fluoride (NaF) group as a result of the 
increase in the production of polyunsaturated fatty 

Table 1. The actions of sodium fluoride and melatonin on oxidative stress markers.

Groups SOD (U/L)
Mean±SEM

MDA (mM)
Mean±SEM

GSH (mM)
Mean±SEM

NS (control) 2.10±0.10 0.83±0.01 0.14±0.01

NaF 1.19±0.01a 0.99±0.01a 0.08±0.01a

NaF±MLT 1.91±0.01b 0.81±0.01b 0.11±0.01

NaF-MLT 1.61±0.01ab 0.84±0.10b 0.13±0.01
a b statistically significant difference as compared to normal saline (NS), sodium fluoride (NaF) groups respectively (p<0.05).
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acid, similarly to the treatment before induction 
(MLT-NaF) group in the cerebral cortex of Wistar 
rats. However, the treatment group that received 
melatonin showed decrease in lipid peroxidation. 
This finding suggests that melatonin can regulate 
the concentration of malondialdehyde in the 
cerebral cortex of Wistar rats by inhibiting lipid 
peroxidation cascade/ pathway; which adds to 
the fact that melatonin is able to restore fatty acid 
concentration by decreasing lipid peroxidation 
(Meda et al., 2014; Baydas et al., 2002; Rodriguez 
et al., 2004).

SUMMARY OF FINDINGS 
Melatonin reduced the rate of neural 

inflammation and also regulated the process of 
apoptosis in the cells of a damaged cerebrum (Fig. 
3). Furthermore, melatonin promoted protein 
synthesis by reducing chromatolysis in the cells 
of the cerebrum (Fig. 3). Lastly, melatonin limited 
the extent of oxidative stress by increasing the 
levels of superoxide dismutase, increased the 
importation of cysteine for the biosynthesis of 
glutathione, and reduced the amount of oxidative 
degradation of lipids in the cerebrum (Fig. 3).

CONCLUSION
At the end of the study, melatonin was able to 

limit the extent of sodium fluoride damage by 
causing reduction in neural inflammation and 
regulating apoptosis, reduction in the proliferation 
of chromatolytic cells and reduction in the 
generation of free radicals. Therefore, melatonin 
(exogenous) acts as an ameliorative substance on 
the cyto-architectural and biochemical damage 
induced by sodium fluoride on the cerebrum of 
adult Wistar rats.
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Fig. 3.- Role of exogenous melatonin on sodium fluoride induced cerebellar damage. 
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