Atrophy of the corpus callosum in heavy alcoholic patients

Taysa Benítez-Delgado¹, Daniel Martínez-Martínez¹, Candelaria Martín-González¹, Lucía Romero-Acevedo¹, J.R. Muñiz-Montes², Geraldine Quintero-Platt¹, Jorge A. López-García³, Emilio González-Reimers¹

¹Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands (Spain), ²Servicio de Radiodiagnóstico, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands (Spain), ³IMETISA-Complejo Hospitalario Universitario de Canarias, Tenerife, Canary Islands (Spain)

SUMMARY

Atrophy of the corpus callosum among alcoholics was classically restricted to patients affected by Marchiafava-Bignami (MB) disease. It was further observed in patients with thiamine and/or niacin deficiency, or in alcoholics who had consumed alcoholic beverages for a long period. A 42-year-old alcoholic patient was admitted with a full-blown alcohol withdrawal syndrome. After recovery, unstable gait and marked pyramidal signs were observed. A brain magnetic resonance was performed, which revealed corpus callosum atrophy. At discharge the patient was placed under ambulatory care. Nevertheless, he never attended his appointments and he was readmitted several times with withdrawal syndrome. Repeated MRI studies showed no remarkable changes besides progressive atrophy of the corpus callosum. Indeed, the area of corpus callosum was markedly reduced when compared with that of 20 alcoholics and 5 further patients with Wernicke’s encephalopathy. Therefore, the clinical picture is consistent with classic MB disease, and the more severe atrophy than that observed in the remaining alcoholics suggests that additional mechanisms may play a role in MB disease.

Key words: Marchiafava-Bignami – Alcoholism – Corpus callosum atrophy

INTRODUCTION

Brain atrophy is one of the most outstanding manifestations of alcoholism. Both grey matter and white matter atrophy have been described in alcoholics. Neuronal death and altered neurogenesis affect nearly the whole brain, but especially frontal lobes, hippocampus, and cerebellum. White matter affection is also widespread (de la Monte and Kril, 2014). Corpus callosum, as the largest white matter tract in the brain becomes also severely damaged in these patients.

Atrophy of the corpus callosum among alcoholics was classically restricted to patients affected by Marchiafava-Bignami disease (MBD). This is an uncommon neurologic disorder, mainly observed among heavy alcoholics, characterized by demyelination and central necrosis of the corpus callosum (Ironside et al., 1961). In 1898, A. Carducci, a pupil of Marchiafava, described the first case in a 50-year-old alcoholic patient in whom the middle part of the corpus callosum showed severe demyelination and necrosis. This case and two additional ones were reported by Marchiafava and Bignami in 1903, underscoring the affection of the central part of the corpus callosum, and stressing the differences with Wernicke’s encephalopathy (Marchiafava and Bignami, 1903). Affected patients were middle-aged men with a protracted history of cheap red wine consumption, and only a few scattered cases were described since then, nearly always in heavy alcoholics, and usually associated with a poor prognosis (Ironside et al., 1961). The exact mechanism is unknown. The per-
icallosal artery, derived from the anterior cerebral artery, irrigates the central part of the corpus callosum, so that it was hypothesized that vascular changes affecting callosal vessels could be involved in MB pathogenesis. However, numerous anastomoses between the pericallosal artery and branches of the posterior cerebral artery generally guarantee an adequate blood supply of the body of the corpus callosum (Li et al., 2015). Moreover, atrophy of the corpus callosum was further observed in patients with thiamine and/or niacin deficiency, or in alcoholics who had consumed alcoholic beverages for a long period. Therefore, ethanol-mediated neurotoxicity, and/or disrupted energetic metabolism caused by thiamine deficiency may also contribute. In this sense, a case of a patient affected by MB who recovered with thiamine supplementation was reported (Pasutharnchat and Phanthumchinda, 2002). However, clinical evolution and severity of MBD among alcoholics, with intense callosal atrophy and a high mortality, strongly suggest that it truly constitutes a distinct entity. In this study, we report the case of a 49-year-old patient, followed up during 7 years with a severe atrophy of the corpus callosum. Area of corpus callosum (in the mid sagittal view in magnetic resonance, MR) was measured and compared with the values observed in a series of 20 alcoholics without MB and 11 controls (Fernández-Rodríguez et al., 2016), and in 5 patients with Wernicke-Korsakoff.

CASE REPORT

A 49 year-old male patient consumer of 200-300 g ethanol daily since the last 25 years was brought by his family to this hospital reporting a forty-eight-hour history of disorientation followed by visual hallucinations (microzoopsia), tremor and anxiety. The patient had not drunk any alcoholic beverage since forty-eight-hours before admission following medical advice, because he was under observation due to gait disorders, repeated falls and difficulty on walking in the previous few weeks. Physical examination was consistent with severe malnutrition, bilateral Dupuytren’s contracture and lower limbs amyotrophy. After admission the patient developed a full-blown withdrawal syndrome that was treated with benzodiazepines and thiamine. One week later the patient still presented behaviour disorder, dysarthritis, cognitive impairment, disorientation and ataxia. No data regarding muscle tonus and reflexes are available for this first admission. Laboratory evaluation disclosed low serum levels of folic acid and the following biochemical alterations: aspartate aminotransferase (ASAT) 393 IU/L and alanine aminotransferase (ALAT) 96 IU/L. Brain MR showed on T2, FLAIR and diffusion-weighted sequences a high signal lesion diffusely affecting corpus callosum, consistent with demyelination and necrosis of the corpus callosum, and cortical cerebral atrophy (Fig. 1). After discharge

Fig. 1. MR images obtained one month after the onset of symptoms. (A) Axial T2-weighted image shows a hyperintense image in the splenium of the corpus callosum. (B) Sagittal T1-weighted shows hypointensity of the splenium of the corpus callosum. (C) Axial fluid-attenuated inversion recovery image shows hyperintensity of the splenium.
the patient did not follow ambulatory clinical assistance, but was readmitted again to the emergency room of this hospital with two new episodes of alcohol withdrawal syndrome. The patient continued with heavy alcohol consumption, was admitted to the emergency room two years before his last admission, being discharged shortly after. Physical examination at his last admission, about 6 months ago, showed marked spasticity and generalized hyperreflexia with inextinguishable achylian and patellar clonus. A new MR showed a severely atrophied corpus callosum, and also moderate cortical atrophy (Fig. 2). Amyotrophy and raised idiomuscular response were still present. Therefore an electrophysiological study was performed, yielding a mixed sensitive-motor polyneuropathy. At discharge the patient, although able to walk a short distance without aid, still showed mild cognitive impairment, despite thiamine treatment. Globally, as derived from the analysis of the clinical records, the neurologic situation of the patient regarding mobility has not varied substantially from the first admission until the last one, but after this last, prolonged hospital stay, mental status showed some improvement.

Area of corpus callosum, in mm2 (divided by the distance between the inner cortical table of the frontal bone and that of the occipital bone (in mm)) was 2.7104 mm2/mm in the first study (2009), 2.1527 mm2/mm in the second one (2014), and 1.5404 mm2/mm in the last, 2016). Area of the corpus callosum of 11 controls, aged 56.2 \pm 6.0 years was 4.7002 \pm 0.6735 mm2/mm; that of the 20 alcoholics, aged 45.2 \pm 19.1, was 3.8751 \pm 0.7311 mm2/mm, and that of the 5 patients with Wernicke-Korsakoff syndrome, aged 56.0 \pm 6.0, was 3.4347 \pm 0.8491 mm2/mm. In Figs. 3, 4a, and 4b we show, for comparative purpose, midsagittal MR images of a normal control, with an area of corpus callosum of 5.210 mm2/mm, and 2 alcoholic patients, one of

![Fig. 2. Follow-up MR images obtained six years after the initial study. (A) Axial T2-weighted shows atrophy and hyperintensity of the splenium of the corpus callosum. (B) Sagittal T1-weighted MR image shows multiple areas of decreased signal intensity involving the entire corpus callosum, which appears atrophic.](image)

![Fig. 3. Sagittal T1-weighted RM image of a normal individual, with an area of corpus callosum of 5.210 mm2/mm.](image)
Marchiafava-Bignami disease

them with severe atrophy (area of corpus callosum=3.9847 mm2/mm), and another without atrophy (area of corpus callosum=4.9542 mm2/mm).

COMMENTS

We here describe the case of a heavy alcoholic patient with an intense atrophy of the corpus callosum. From a clinical point of view, the patient had difficulty in walking, with spasticity, and there were also other striking signs consistent with pyramidal lesion, such as marked hyperreflexia and bilateral Babinski sign. There were also some data derived from peripheral nerve affection that was objectively evidenced by electrophysiological study. MR imaging (especially the last one) showed intense atrophy of the corpus callosum, especially at its middle zone. Both clinical picture and MRI findings are fully compatible with the classic description of Marchiafava-Bignami disease.

This entity was initially reported in some Italian patients consumers of red wine (Carducci, 1898; Marchiafava and Bignami, 1903). It was hypothesized that perhaps certain compounds specifically contained in this kind of beverage were responsible for the necrosis of the corpus callosum presented by these patients, although etiology and pathophysiology remained obscure. Interestingly, in the commented series of 20 alcoholic patients the mean and standard deviation of callosal area obtained in sagittal view of magnetic resonance (MR) was 3.8751 ± 0.7311 mm2/mm. Although the number is relatively short, the lower limit of the 95% confidence interval of this parameter among alcoholic patients is 2.4228 mm2/mm, still higher than that observed in the MB patient, whose corpus callosum (in the last MR study) was also more atrophied than the lower limit of the corpus callosum of the Wernicke’s patients (1.7706 mm2/mm). Differences are even more striking if we consider that the mean value of controls is 4.7002 ± 0.67352 mm2/mm, leading to a lower limit of the 95% confidence limit of 3.3801 mm2/mm. The more severe atrophy of this patient suggests that other unknown factors add to the ethanol-derived neurotoxicity and thiamine-deprivation associated disturbed energetic balance that may underlie the atrophy of corpus callosum observed in alcoholics without MB disease.

Along with the widespread use of MRI in the clinical practise, in recent years several cases of focal and/or reversible cases of corpus callosum affection detected by MRI have been reported (Bulakbasi et al., 2006), especially among patient with seizures, encephalitis, antiepileptic drugs withdrawal, metabolic disturbances such as hypoglycaemia and hypernatremia, among others (McLeod et al., 1987). In contrast with the classic Marchiafava-Bignami disease, these last patients usually recovered completely both clinically and regarding the MRI findings in a short-time period ranging from three days until two months. Probably these cases represent another disease. In fact the term Reversible Splenial lesion Syndrome (RESLES) has been coined (Garcia-Monco et al., 2011).

Ethanol-associated, chronic form of MBD is a rather uncommon disease. In a review article published in February 2014 only 153 patients had been reported (Hillbom et al., 2014). There are controversial results regarding prognosis. Helenius et al. (2001) comment on unfavourable outcome in
90% of patients, whereas other authors address a rapid recovery of the reported patients (García-Monco et al., 2011). These disparate results probably reflect that, in fact, classic, chronic, MBD and the so called acute MBD or RESLES syndrome constitute different entities.

In some studies, the presence of coexisting cortical atrophy was associated with a worse prognosis (Namekawa et al., 2013). Probably cortical atrophy represents another illness related to heavy alcoholism independent of Marchiafava-Bignami disease. In fact, brain cortical atrophy has been reported in 50-80% of chronic alcoholics (Bates et al., 2002). It usually manifests as cognitive impairment and/or dementia and is reversible with alcohol abstinence (Demirakca et al., 2011). Brain cortical atrophy has been also reported to occur in patients affected by thiamine deficiency (Wernicke-Korsakoff syndrome; Sullivan and Pfefferbaum, 2009). Again, considerable debate exists regarding this item, since probably brain atrophy in alcoholics with thiamine deficiency also represents an independent lesion, in possible relation with a direct effect of ethanol and/or ethanol-mediated inflammatory response (Gonzalez-Reimers et al., 2015).

Brain atrophy was indeed observed in the patient here described. Although we cannot fully exclude the possibility that it truly represents a complication of Marchiafava-Bignami disease, we believe that it rather depends on a direct effect of ethanol, in a way similar to the sensory motor peripheral nerve affection. Due to the severe neurological impairment of this patient and the fact that he was waiting for a sociosanitary facility, the duration of this last hospital admission was quite long (two months). During this period, the patient here presented, despite treatment with thiamine, had no significant improvement of any of the reported symptoms.

Therefore, we here present a patient with the chronic form of MBD, and entity classically associated to a very high mortality. This was not the case in the patient here presented, despite intense ethanol consumption. Possibly in relation with the perseveration in the alcoholic habit, a marked atrophy of the corpus callosum, with necrosis of its central area was clearly evident, constituting a striking example of this uncommon entity. Also, illustrating the co-existence of several ethanol mediated alterations in a same patient, diffuse cortical atrophy and peripheral nerve affection were also evident. The more severe atrophy observed in this patient when compared with that observed in other alcoholics, and the clinical picture, strongly suggest that MB is in fact a distinct entity in which pathogenesis other unknown factors may play a role in addition to the commented neurodegeneration and energetic unbalance described in alcoholics without MB disease. Further studies are needed to assess whether the intensity of corpus callosum atrophy differs in patients with thiamine deficiency, or with uncomplicated heavy alcoholism, or in MB patients, as this study points out.

REFERENCES

Marchiafava-Bignami disease

MARCHIAFAVA E, BIGNAMI A (1903) Sopra un’alterazione del corpo calloso osservata in soggetti alcolisti. Riv Patol Nerv Ment, 8: 544-549.

